

Interactions of actinides with cement corrosion products in chloride rich solutions: modelling and experimental results

V. Metz, B. Kienzler, M. Altmaier, A. Bauer, E. Bohnert, M. Schlieker Institute for Nuclear Waste Disposal (INE) Research Centre Karlsruhe / Karlsruhe Institute of Technology Germany

2nd International Workshop

"Mechanisms and modelling of waste / cement interactions"

October 12-16, 2008, Le Croisic

1 | Institut für Nukleare Entsorgung (INE) | Karlsruhe Institute of Technology (KIT)

HELMHOLTZ

F. Geyer, S. Hilpp, M. Nesovic, M. Plaschke, J. Römer, E. Soballa and C. Walschburger (INE) for carrying out DTA, ICP-MS, OES, SEM-EDS, Raman and XRF analyses

R. Odoj and team for core drilling at FZJ-IEF6

K. Garbev (ITC-TAB) for assistance in evaluating XRD data

HMGU Asse and Bundesamt für Strahlenschutz, BfS, for technical support during probing of full-scale experiments and partial funding of the study

HELMHOLTZ

Background - Objectives

corrosion of cemented radioactive waste forms (LLW / ILW) under conditions of a repository in rock salt

durability of cemented waste forms in brine? geochemical evolution of brine / secondary phases? radionuclide retention?

- studying corrosion of cement forms in MgCl₂ brine
- studying interactions of Np, U with cement corrosion products
- comparison of modelling predictions to results of
 - short-term laboratory experiments with (Np, U doped) cement powders and
 - <u>long-term full-scale experiments</u> with (Np, U doped) doped waste simulates / ~200 dm³ cement form blocks

3 | Institut für Nukleare Entsorgung (INE) | Karlsruhe Institute of Technology (KIT)

HELMHOLTZ

Long-term corrosion experiments

Forschungszentrum Karlsruhe

in der Helmholtz-Gemeinschaft

- static experiments since 1979/1989 (INE: 1996)
- simulated cemented waste samples doped with Cs_{nat} and RN (²³⁷Np, U_{nat},¹³⁷Cs)
- waste simulates correspond to products of spent nuclear fuel reprocessing (*Purex* process; ~ 10 wt.% NaNO₃)
- Ordinary Portland Cement
- cement paste, water/cement ratio 0.3 0.5
- 160 dm³ hardened cement blocks immersed in 400 dm³ drums filled with leachant: MgCl₂-brine ("Q-brine"), NaCl brine, tap water
- experiments conducted at ambient conditions of LLW / ILW repository Asse salt mine (490-m level, 28° C)

GEMEINSCHAFT

Long-term corrosion experiments

Forschungszentrum Karlsruhe

in der Helmholtz-Gemeinschaft

- static experiments since 1979/1989 (INE: 1996)
- simulated cemented waste samples doped with Cs_{nat} and RN (²³⁷Np, U_{nat},¹³⁷Cs)
- simulates correspond to products of spent nuclear fuel reprocessing (*Purex* process; ~ 10 wt.% NaNO₃)
- Ordinary Portland Cement
- cement paste, water/cement ratio 0.3 0.5
- 160 dm³ hardened cement blocks immersed in 400 dm³ drums filled with leachant: MgCl₂-brine ("Q-brine"), NaCl brine, tap water
- experiments conducted at ambient conditions of LLW / ILW repository Asse salt mine (490-m level, 28° C)

HELMHOLTZ

Initial composition of waste simulate (e.g. drum #33)

sample #33					- coment phoose comprise	
constituent	mass / kg	constituent		mass / kg	cement phases comprise	
AI $(NO_3)_3 \cdot 9 H_2O$	0.33	Portland cer	nent	200	~90% of sample	
$Ca (NO_3)_2 \cdot 4 H_2O$	0.92	water		99.02	 nitrates minor components 	
Cr (NO ₃) ₃ · 9 H ₂ O	0.06	total		336.00	 accessories complexing 	
Cu (NO ₃) ₂ · 3 H ₂ O	0.06				agents (< 0.6 wt% in solid,	
Fe (NO ₃) ₃ · 9 H ₂ O	0.29	water/cemei	nt	0.50	inventory <3*10 ⁻² molal in	
Mg (NO ₃) ₂ · 6 H ₂ O	0.82				leachant: tartrate, citrate,	
Mn (NO ₃) ₂ · 2 H ₂ O	0.03	waste conte	nt	11.0%	oxalate	
Ni (NO ₃) ₂ · 6 H ₂ O	0.04	RN content			 radionuclides doped in 	
Zn (NO ₃) ₂ · 6 H ₂ O	0.07	U(nat)		5 MBq	trace concentrations	
Na-tartrat · 2 H ₂ O	0.61				(few grams Np per sample	
Na-citrat · 2 H ₂ O	0.59				1 kg U _{nat} per sample)	
Na ₂ HPO4 · 12 H ₂ O	1.31			· c: 1		
$Na_2MoO_4 \cdot 2 H_2O$	0.10	significant complexation of U(VI), Np(V)				
NaNO3	31.11	at aqueous concentrations of "free"				
KNO ₃	0.02		_	chelating	agents > 10^{-2} motal	
Na-oxalate	0.52		=> SC	avenging of	cheials by Ca ²⁺ , Mg ²⁺ ?	
NaF	0.10					

6 | Institut für Nukleare Entsorgung (INE) | Karlsruhe Institute of Technology (KIT)

HELMHOLTZ

Core drilling in glove box

after approaching steady state (with respect to solution composition) termination & core drilling

- •dry drilling performed at Research Centre Jülich
- due to production of contaminated dust drilling in glove box
- samples from various depth and lateral positions

Laboratory experiments: Materials and methods

(A) cement / brine equilibration experiments

inactive corrosion of OPC paste (w/c = 0.4) in Q-, R- and conctr. MgCl₂-brine at various mass_{cement} / volume_{brine} ratios ($0.001 < m/V < 1.1 \text{ g cm}^{-3}$)

(B) Np, U sorption experiments

adding aliquots of ²³⁷Np(V), ²³³U(VI) stock solutions to equilibrated cement / brine systems (variation in m_{cement} / V_{brine})

(C) Np, U solubility experiments

- dissolving Np, U solids in equilibrated solution of (A) cement / brine equilibration
- dissolving Np, U solids in pure MgCl₂- and NaCl-solutions (pH variation; NpO₂, NpO₂OH, UO₃:2H₂O, Na₂UO₂O(OH))

static experiments running for 6 - 24 months; Ar atmosphere (pO₂, pCO₂ \leq 1 ppm); powders of hardened cement paste (A) and cement corrosion product (B), respectively

in der Helmholtz-Gemeinschaft

ELMHOLTZ

GEMEINSCHAFT

Laboratory experiments: solid material

MgCl₂ rich leachants: initial compositions

GEMEINSCHAFT

Geochemical simulations: conceptual model

Reaction path modeling:

- initial thermodynamic equilibrium between solution and solid phase computed
- infinitesimal amount of reactant cement paste "added" to solution
- new equilibrium calculated including precipitation of super-saturated solid phases
- in next step, again infinitesimal amount of reactant added to altered solution (...)

11 | Institut für Nukleare Entsorgung (INE) | Karlsruhe Institute of Technology (KIT)

GEMEINSCHAFT

- EQ3/6 software package (Geochemist's Workbench)
- concentrated salt solutions: Pitzer activity model
- Harvie-Moller-Weare database Na-K-Mg-Ca-H-Cl-SO4-OH-HCO3-CO3-CO2-H2O including brucite, Mg-oxychloride, Ca-oxychlorides, calcite, Mg-hydroxocarbonates ...
- simplifications necessary due to lack of thermodynamic data (e.g. Pitzer parameters)
- EQ3/6 data0.hmw database extended for solubility products, log K_{sp} , complexation constants, log β , and ion-interaction coefficients (Pitzer parameters):
 - Np(V), U(VI) solids, aqueous species, Pitzer param. for Mg-Na-H-CI-OH-H $_2$ O
 - AI, Si aqueous species, Pitzer parameters
 - solubility products, log K_{sp}, of alumosilicate / aluminate endmembers: hydrotalcite 4MgO.Al2O3.10H2O, quartz SiO2,

chlorite endmembers, e.g. clinochlore Mg5Al2Si3O10(OH)8,

smectite endmembers e.g. Ca-saponite Ca.165Mg3AI.33Si3.67O10(OH)2

Results of laboratory experiments

corrosion of OPC powder in MgCl₂ brine

specific experimental series for $0.001 < m/V < 1.1 \text{ g cm}^{-3}$

Solution composition

within few weeks approaching apparent steady-state $\Delta C/\Delta t \rightarrow 0$ when $\Delta C \leq$ analytical uncertainty

In concentrated MgCl₂ solution high detection limit Si, Al conctr. < detection limit

GEMEINSCHAFT

15 | Institut für Nukleare Entsorgung (INE) | Karlsruhe Institute of Technology (KIT)

Results of laboratory experiments

corrosion of OPC powder in MgCl₂ brine

16 | Institut für Nukleare Entsorgung (INE) | Karlsruhe Institute of Technology (KIT)

norm. intensity

HELMHOLTZ GEMEINSCHAFT

Comparison results of simulation with

results of laboratory / full-scale experiments

Laboratory experiments: Steady state results OPC in R-brine / Q-brine (*stars*)

<u>Full-scale experiments:</u> temporal evolution of waste simulate in Q-brine (*small symbols*)

Simulation: evolution of OPC in Q-brine (*lines*)

ELMHOLTZ Forschungszentrum Karlsruhe GEMEINSCHAFT in der Helmholtz-Gemeinschaft

Comparison results of simulation with

With respect to solution composition

waste components don't affect significantly overall solution evolution

up-scaling of lab results (volume scale; powder / cement block)

Fair agreement between results of simulation with results of laboratory / full-scale experiments

Full-scale experiment(s) close to equilibrium?

HELMHOLTZ

Full-scale experiments: XRD and SEM-EDS

characterization of final solid samples

25.0 kU 0414

Hydrotalcite, ettringite, gypsum, halite, brucite +/- Mg-oxychloride calcite (mainly surface zone)

Homogenous lateral and vertical distribution of mineral phases (except calcite enrichment in first 10 cm)

HELMHOLTZ

Full-scale experiments: nitrate and DTA-TG

analyses of final solid samples

Summary of nitrate analyses

no significant radical / vertical variation in nitrate content (additionally steady state in aqueous nitrate concentration)

Summary of DTA-TG analyses

- homogenous distribution of phases containing OH-, SO₃-, CO₂-groups (homogenous DTA-TG patterns)
- exception calcite enrichment in outer surface zone calcite content in internal zones < 2 wt%

homogenous distribution of mineral phases in corroded cement blocks

 formation of stable secondary phases with respect to solution composition (hydrotalcite, gypsum, halite, brucite +/- Mg-oxychloride)

indicate **equilibration of cement / brine systems** of full-scale experiments within ~25 years

HELMHOLTZ

Variation of U concentration with time: full-scale experiments 1.E-04 1.E-05 concentration / mol (kg H2O)-1 time/d 2000 3000 1000 4000 10 * * Mq 1.E-06 0 10 \bigcirc PH_{EQ3/6} 10 \bigcirc 10 1.E-07 10 10 \bigcirc \bigcirc 10 10^{-2} 10⁻¹ 10⁰ reaction progress Zi/kg cement (kg H₂O)⁻¹ ð 1.E-08 changes in solution composition affects 1.E-09 changes in U conctr. 10 15 5 20 0 time / years A HELMHOLTZ Forschungszentrum Karlsruhe 22 | Institut für Nukleare Entsorgung (INE) | Karlsruhe Institute of Technology (KIT) in der Helmholtz-Gemeinschaft GEMEINSCHAFT

Laboratory experiments on U(VI) solubility

Np(V) solubility experiments

In full-scale experiments, $1*10^{-10}$ M Np measured after 9 years, increased to $8\pm4\cdot10^{-10}$ M after ~15 years – Np concentration far below NpO₂OH solubility

Np(V) sorption experiments: kinetics

•adding aliquots of ²³⁷Np(V) stock solutions to <u>equilibrated</u> cement / Q-brine systems
•main mineral phases: Mg-oxychloride, hydrotalcite, gypsum
•sufficient inventory of equilibr. phases: same solution composition for changing V/m
•measured Np(V) concentrations, <10⁻⁶ M, far below NpO₂OH solubility

Np(V) sorption experiments

results of equilibrated sorption experiments

linear isotherm derived from log (Np loading mol/g) vs. log (Np_{aq} mol/L) based on sorption coefficient, Np concentration in the full scale experiment is calculated to be $1.3\pm0.3\cdot10^{-9}$ M - compared to $8\pm4\cdot10^{-10}$ M measured after ~15 yrs.

Homogenous distribution of mineral phases in corroded cement blocks – and formation of stable phases (hydrotalcite, gypsum, halite, brucite +/- Mg-oxychloride) indicate equilibration of cement / brine full-scale experiments within ~25 years

Simulated evolution of MgCl₂-brine / cement system as a function of corrosion progress is found to be in fair agreement with results of full scale experiments and laboratory experiments

Due to high U inventory of the full scale experiments, U concentrations in solution aliquots correspond to calculated solubilities of schoepite / NaUO2O(OH)(s)

Observations suggest that Np retention is controlled by adsorption onto cement corrosion products rather than by solubility phenomena

Waste components (nitrate, oxalate ...) do not affect significantly geochemical evolution / behaviour of Np, U

28 | Institut für Nukleare Entsorgung (INE) | Karlsruhe Institute of Technology (KIT)

HELMHOLTZ

Open Post-Doc Position Interactions of radionuclides with cement corrosion products Contact: Volker Metz <volker.metz@kit.edu>

TRePro II 2009 Workshop on Modelling of Coupled Transport Reaction Processes Karlsruhe, Germany, March 18 - 19, 2009 Contact: Johannes Lützenkirchen <johannes@ine.fzk.de>

PAUL SCHERRER INSTITUT

œ

HELMHOLTZ

Experimental systems

sample	doping	water/cement	leachant	start of	termination
		ralio		leaching	(aniing)
#25	U(nat)	0.3	Q-brine	1984	
#26	U(nat)	0.34	Q-brine	1984	
#28	Cs-137	0.43	Q-brine	1984	2006
#33	U(nat)	0.5	Q-brine	1989	2006
#34	U(nat)	0.5	Q-brine	1989	
#35	Np-237	0.5	NaCI-brine	1989	
#36	Np-237	0.5	Q-brine	1989	

320 – 340 kg cement forms with 237 Np 11 Bq/g, U_{nat} ~15 Bq/g, 137 Cs 550 Bq/g

- periodical solution sampling monitoring aqueous phase
- analyzing surface precipitates
- after approaching steady state (with respect to solution composition) termination & core drilling solid sampling
- ¹³⁷Cs doped sample: evolution cement / brine system

HELMHOLTZ

Comparison pH_{exp} with pH_{Pitzer} / -log m_{H+}

 $pH_{exp} = pH_{Pitzer} - \Delta pH = -log m_{H+} - A$

Pitzer (EQ3/6) convention: $\psi_{CI-/CI-/H+} = \psi_{/CI-/H+} = \theta_{CI-/CI-} = \theta_{H+/H+} = 0$

33 | Institut für Nukleare Entsorgung (INE) | Karlsruhe Institute of Technology (KIT)

GEMEINSCHAFT

in der Helmholtz-Gemeinschaft

Application of Results

Low- and intermediate-level radwaste forms (LLW / ILW) emplaced in Zechstein diapirs, e.g. Asse salt mine (Germany):

- \approx 1300 drums ILW
- \approx 125000 drums LLW
- ≈10¹⁵ Bq total RN inventory (mainly Pu, <u>U</u>, Th, Cm, <u>Np</u> and Cs)
- intrusion of MgCl₂-rich Q-brine
- >30000 t Portland cement (OPC)
- $\approx 65000 \text{ m}^3 \text{ void volume}$

interaction of actinides with cement corrosion products critical for the long-term safety of emplaced radwaste

34 | Institut für Nukleare Entsorgung (INE) | Karlsruhe Institute of Techno

